VARIATIONAIL METHOD OF DESCRIBING NONLINEAR
EQUILIBRIUM PROCESSES

I. F. Bakhareva and A. F. Krylov UDC 536.70

A nonlinearity, which is the nonconstancy of the matrix of phenomenological coeffi-
cients, is considered. The variational principle obtained ou the basis of mechanical analo-
gies in thermodynamics is generalized for this case. The heat conduction phenomenon is ex-
amined as an illustration,

A nonlinearity typical for transfer phenomena, which is that the matrix of the phenomenological coef-
ficients Lik
Lih:Lix(‘le"" Tn) (i,k:l,...,n) (1)
is not constant, is examined herein. Similar processes have been investigated thermodynamically most

completely in the case of stationary states by the local potential method {1, 2], which is an expression of the
general Prigogine and Glansdorf evolution criterion [1].

Besides being of heuristic interest, a variational method to describe nonequilibrium processes turns
out 1o be useful for the selection of approximate methods of solving nonlinear equations; even more so if
the interesting domain of variation of the variable is bounded by the neighborhood of the stationary state,

say.

In the linear case (L =const), the parabolic equations describing transfer phenomena can be obtained
as a result of either the Dyarmaty variational principle [3], or the variational coadition [4] formulated on
the basis of the analogy between the nonequilibrium vector process and the mechanics of a continuous medi-

um.

The possibility of this variational principle
{(aL — Y Q8¥)do =0 @)

is investigated below in the case of nonlinear vector processes of the kind mentioned. The density of the
Lagrange function

n

L :% o Egk(v 7, 3)

F3

is here related to the entropy by means of the relationship

AS=— S 0 Egk (v ¥y do. @
k

In the linear case

g, = const. (5)
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In conformity with the investigated character of the nonlinearity, it can be considered that
8 = gk (wlv vy IIJ-n) (6)

Now, let us admit that the form of the function AS and also condition (3) are hence conserved. The dissi-
pation function R should satisfy the general demand that entropy production should equation the intensity of

the dissipative forces
S S
= QiIFidU.
j;J @

It is easy to see that in conformity with (7)., (4),and (6) the dissipative function is

(de = ﬂ { 2 (L) Yoo, W, W, + —‘21— E -+ %(V ) \Fz} do
v v ik ‘

i,k

(®)

In the linear case (g =const), (8) goes over into the expression known from [4].

If the dissipation function has been defined truly and (3) is valid for the condition (6), then the nonlinear
relationships between the fluxes and forces or their corresponding parabolic equations should be expressed
by the Euler— Lagrange equations

3
o) WY 0 o) _, ©)
0¥,  smd Oy, OJY,,
o p=l
Let us now make the above specific by the illustration of heat conduction in a solid. Let us select the
absolute temperature T as the parameter ¥. The density of the Lagrange function and the dissipative func-
tion are expressed as follows:

1

T 9 (10)
A _ 2 aTr |
=\{—0'cfl —pof = Ty —du, 1
R=([goe ()+ f(Tywa”v )
Q — aDJaT. (12)
The Euler— Lagrange equation becomes
d (¢, aT
RO o () W= e S 13)

Assuming / to be proportional to the specific heat

(T) = ac, (T), (14)
we obtfain the known nonstationary heat conduction equation
aT
AT + —(VT) =pe 15)

Here the coefficient A is related to!l by the dependence

MT) =— (16)

IT)
T2
Now, let us examine the stationary state and its neighborhood. Exactly, as in the local potential
method, A(T) can be replaced by A(Ty) for small deviations from the stationary state, where T, is the
stationary temperature distribution. In this approximation

Pf ( (VT) a7)
B — oT
R: .2 2 1
j2pcﬂ ()Odv (18)
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The application of the variational condition (2) results in the following form of the Euler—TLagrange equation

1(Ty) I(T)  OT [ c,(Ty) or
—== AT R L) T T = pc, —
T(Z) + c, (To) ot ( T(Q) ) VieV Py of L] (19)

which is an approximate equation and goes over into the exact equation only in application to the stationary
state.

Comparing the exact equation (15) with (19), the latter should be estimated as sufficiently rigorous to
describe the process in the neighborhood of the stationary state. Here (19), in contrast to (15), admits
the possibility, in principle, of using the Fourier method to construct an analytical solution since, as is
easy to see, the equation characterizing the dependence of the temperature on the coordinates is linearafter
separation of variables.

The formalism proposed permits description of the stationary state in terms of a variational condition
exactly as this is accomplished in the local potential method.

In fact, the exact equation describing the stationary state and being the most rigorous result of the
general evolution criterion can be obtained from the extremum (maximum) condition of the functional

O, Ty) = — f% of —"l%—"’—(vnz .

NOTATION

is the density of the Lagrange function;

is the generalized thermodynamic parameter;
is the system entropy;

is the dissipative function;

is the time;

is the absolute temperature;

is the density of the dissipation function;

is the volume;

is the coefficient of heat conduction;

is the dissipative force.

LX< gt neH
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