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A nonlinearity, which is the nonconstancy of the matr ix  of phenomenological coeffi-  
cients, is considered.  The variational principle obtained on the basis  of mechanical  analo- 
gies in thermodynamics  is general ized for this case.  The heat conduction phenomenon is ex- 
amined as an i l lustrat ion.  

A nonlinearity typical for t r ans fe r  phenomena, which is that the matr ix  of the phenomenological coef- 

ficients Lik 

Li~ = L~(1F1 . . . . .  ~ )  (i, k = 1 . . . . .  n) (1) 

is not constant, is examined herein.  Similar p rocesses  have been investigated thermodynamical ly  most  
completely in the case of s ta t ionary states by the local potential method [1, 2], which is an express ion of the 
general  Prigogine and Glansdorf evolution cr i te r ion  [1]. 

Besides being of heurist ic interest ,  a variational method to descr ibe nonequilibrium processes  turns 
out to be useful for the select ion of approximate methods of solving nonlinear equations; even more  so if 
the interest ing domain of variation of the variable is bounded by the neighborhood of the s t a t iona ry  state, 

say.  

In the linear case (L =const),  the parabolic equations descr ibing t r ans fe r  phenomena can be obtained 
as a resul t  of ei ther  the Dyarmaty  variat ional  principle [3], or  the variational condition [4] formulated on 
the basis  of the analogy between the nonequitibrium vector  process  and the mechanics of a continuous medi-  

t l m .  

The possibility of this variat ional  principle 

~(SL - -  s Q ~ , ) d o  = O 
i 

is investigated below in the case of nonlinear vector  p rocesses  of the kind mentioned. 

Lagrange function 

'2  L = y P gh (V gk) ~ 

k 

is here related to the entropy by means of the relationship 

n 'SZ AS = - -  ~- p gh (V ~k) ~ dr. 

k 

(2) 

The density of the 

(3) 

(4) 

In the linear case 

g~ = const. (5) 
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In conformi ty  with the invest igated c h a r a c t e r  of the nonlineari ty,  it can be cons idered  that 

gh =: & (~1 . . . . .  lJ ' , , ) .  (6) 

Now, let us admi t  that the fo rm of the function AS and a l so  condition (3) a r e  hence conserved .  The d i s s i -  
pation function R should sa t i s fy  the genera l  demand that  en t ropy  production should equation the intensi ty of 
the d iss ipat ive  forces  

2R dhS _ ; ~..~ QiiF flv" 
dt - (7) 

i 

It  is e a s y  to see that  in conformi ty  with (7), (4),and (6) the diss ipat ive  function is 

n ~ ( 8 )  

' 2 

Z +  Ogh ( 
d T ,  - V Tk)  2 T*} dr. 

~,k i,k 

~n the l inear  case  (gk =const) ,  (8) goes over  into the express ion  known f rom [4]. 

If the d iss ipat ion function has been defined t ru ly  and (3)is valid fo r the  condition (6), then the nonlinear  
re la t ionships  between the fluxes and forces  or  the i r  cor responding  parabol ic  equations should be e x p r e s s e d  
by the E u le r -  La grange equations 

3 

0 ( L ) _ V  0 . 0(L) _ 0 .  (9) 
a ~  ~ Og~ OV~ 0 

p = l  

Let us now make the above specif ic  by the i l lus t ra t ion  of heat  conduction in a solid. Let  us se l ec t  the 
absolute t e m p e r a t u r e  T' as the p a r a m e t e r  ~,. The densi ty  of the Lagrange function and the diss ipat ive  func- 
tion a re  e x p r e s s e d  as follows: 

• Of ~ (vr) ~, L = 2 (10) 

Cfl/T 2 2~'-~/ aT ~2 -21 a ( c~ / .aT  I R =  ~ p C.lt , - - ,  + Pf do, (11) \ at / "~- --~ (vT) ' -~- /  
~J 

Q = OD/OT. (12) 

The E u l e r -  Lagrange  equation becomes  

 AT+Z . o 
T 2 c~ OT 

Assuming  l to be propor t ional  to the specif ic  heat  

[ (T) = ac o (r), 

we obtain the known nons ta t ionary  heat  conduction equation 

0~ i  T) 2 

% )  2 OT 
-~-  (vT) = pco 0~-" (13) 

(14) 

OT 
at " (15) 

Here  the coeff icient  X is re la ted  to l by the dependence 

~. (T) l (T) (16) 
T 2 

Now, let us examine the s t a t ionary  s tate  and its neighborhood. Exactly,  as in the local potential  
method, X{T) can be rep laced  by X(T 0) for  sma l !  deviations f rom the s ta t ionary  s ta te ,  where  T o is the 
s t a t iona ry  t e m p e r a t u r e  dis t r ibut ion.  In this approximat ion  

1 ~ c~ ( T o )  
L = ~ -  P I - - T - ~  (vT)2' (17) 

(' 1 ~ 2 ~ , - 1  0T 
= j-s  (ro)-~-do. ( i s )  
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The applicat ion of the var ia t iona l  condition (2) resu l t s  in the following form of the E u l e r - L a g r a n g e  equation 

I(To) A T +  l(r~ or (c,(To) I aT 
To c o (To) " Ot ~ ]  VT~ VT = pcv a---/-' (19) 

which is an approx imate  equation and goes over  into the exact  equation only in applicat ion to the s ta t ionary  
s ta te .  

Compar ing  the exact  equation (15) with (19), the la t te r  should be es t imated  as  suff icient ly r igorous  to 
desc r ibe  the p rocess  in the neighborhood of the s ta t ionary  s ta te .  Here  (19), in con t r a s t  to (15), admi t s  
the possibi l i ty,  in pr inciple ,  of using the Four i e r  method to cons t ruc t  an analyt ical  solution since,  as  is 
e a s y  to see ,  the equation cha rac t e r i z ing  the dependence of the t e m p e r a t u r e  on the coordinates  is l inear  a f t e r  
separa t ion  of va r i ab les .  

The f o r m a l i s m  proposed pe rmi t s  descr ip t ion  of the s t a t ionary  s tate  in t e r m s  of a var ia t iona l  condition 
exact ly  as this is accompl i shed  in the local potential  method. 

In fact,  the exact  equation descr ib ing  the s ta t ionary  s ta te  and being the mos t  r igorous  resu l t  of the 
genera l  evolution c r i t e r ion  can be obtained f rom the e x t r e m u m  (maximum) condition of the functional 

(D (T, To) = -- S l p f  ~ (vT)~ dv. 

L is the 
is the 

S is the 
R is the 
t is the 
T is the 
D is the 
v is the 
X is the 
Q is the 

N O T A T I O N  

densi ty  of the Lagrange  function; 
genera l ized  the rmodynamic  p a r a m e t e r ;  
s y s t e m  entropy;  
diss ipat ive  function; 
t ime;  
absolute t empe ra tu r e ;  
densi ty  of the diss ipat ion function; 
volume; 
coeff icient  of heat  conduction; 
d iss ipat ive  force .  
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